Mechanistic Insights into HCO$_2$H Dehydrogenation and CO$_2$ Hydrogenation Catalyzed by Ir(Cp*) Containing Tetrahydroxy Bipyrimidine Ligand: The Role of Sodium and Proton Shuttle

Tanakorn Wonglakhona and Panida Surawatanawonga,b

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

bCenter of Sustainable Energy and Green Materials, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand. *E-mail: panida.sur@mahidol.ac.th

The mechanism of HCO$_2$H dehydrogenation catalyzed by [IrCp*(H$_2$O)(bpymO$_4$H$_4$)]$^{2+}$, (bpymO$_4$H$_4$ = 2,2′,6,6′-tetrahydroxy-4,4′-bipyrimidine) was investigated using density functional theory. The relative free energy profiles at various protonation states, corrected to pH 3.5 and pH 7.6, suggested that Na$^+$ together with the ortho-oxyanion of bipyrimidine facilitates the formation of the Ir-HCO$_2$, subsequent hydride transfer, and H$_2$ formation. HCO$_2$H was found to be a more effective proton shuttle than H$_2$O for H$_2$ formation. Under experimental conditions, the highest catalytic reactivity was found at pH 3.5-4.0, where both HCO$_2$Na and HCO$_2$H are present. At lower pH, at low formate concentration, HCO$_2$H dehydrogenation tends to proceed via a Na$^+$ independent pathway, involving a higher energy barrier. At higher pH, although Na$^+$ can mediate hydride transfer and H$_2$ formation, the low amount of HCO$_2$H results in H$_2$O as the proton shuttle, which involves a higher energy barrier than HCO$_2$H proton shuttle. That is, the catalytic activity of HCO$_2$H dehydrogenation by the proton-responsive Ir complexes at different pH values is influenced by the protonation state, involvement of Na$^+$, and the availability of HCO$_2$H as a proton shuttle. For the hydrogenation of CO$_2$ at pH 8.3, the rate determining step is heterolytic cleavage of H$_2$ mediated by Na$^+$, via a HCO$_3^-$ proton shuttle. Our results demonstrate the importance of alkali metal ions in the design of catalysts for efficient, reversible, CO$_2$ conversion.